Nucleotide Excision Repair, Genome Stability, and Human Disease: New Insight from Model Systems

نویسندگان

  • David J. Garfinkel
  • Adam M. Bailis
چکیده

Nucleotide excision repair (NER) is one of several DNA repair pathways that are universal throughout phylogeny. NER has a broad substrate specificity and is capable of removing several classes of lesions to the DNA, including those that accumulate upon exposure to UV radiation. The loss of this activity in NER-defective mutants gives rise to characteristic sensitivities to UV that, in humans, is manifested as a greatly elevated sensitivity to exposure to the sun. Xeroderma pigmentosum (XP), Cockaynes syndrome (CS), and trichothiodystrophy (TTD) are three, rare, recessively inherited human diseases that are linked to these defects. Interestingly, some of the symptoms in afflicted individuals appear to be due to defects in transcription, the result of the dual functionality of several components of the NER apparatus as parts of transcription factor IIH (TFIIH). Studies with several model systems have revealed that the genetic and biochemical features of NER are extraordinarily conserved in eukaryotes. One system that has been studied very closely is the budding yeast Saccharomyces cerevisiae. While many yeast NER mutants display the expected increases in UV sensitivity and defective transcription, other interesting phenotypes have also been observed. Elevated mutation and recombination rates, as well as increased frequencies of genome rearrangement by retrotransposon movement and recombination between short genomic sequences have been documented. The potential relevance of these novel phenotypes to disease in humans is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly specific and sensitive method for measuring nucleotide excision repair kinetics of ultraviolet photoproducts in human cells

The nucleotide excision repair pathway removes ultraviolet (UV) photoproducts from the human genome in the form of short oligonucleotides ∼ 30 nt in length. Because there are limitations to many of the currently available methods for investigating UV photoproduct repair in vivo, we developed a convenient non-radioisotopic method to directly detect DNA excision repair events in human cells. The ...

متن کامل

signatures related to carcinogens and DNA repair deficiency whole genome sequencing reveals mutational

Mutation is associated with developmental and hereditary disorders, ageing and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used C. elegans whole genome sequencing to model mutational signatures, analysing 183 worm populations across 17 DNA repairdeficient backgrounds, propagated for 20 generations or exposed to carcinogens. The ba...

متن کامل

Enhanced sensitivity to anti-benzo(a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells.

DNA damage from exposure to environmental chemical carcinogens and failure of repair systems to eliminate these lesions from the genome are considered as the crucial initial steps in the development of various human malignancies. Many cellular proteins are known to play vital roles to overcome the effects of DNA damage. Among such proteins, p53 is known to respond to DNA damage by accumulating ...

متن کامل

Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson’s Disease

The underlying relation between Parkinson's disease (PD) etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts ...

متن کامل

Damage of DNA and proteins by major lipid peroxidation products in genome stability.

Oxidative stress and lipid peroxidation (LPO) accompanying infections and chronic inflammation may induce several human cancers. LPO products are characterized by carbohydrate chains of different length, reactive aldehyde groups and double bonds, which make these molecules reactive to nucleic acids, proteins and cellular thiols. LPO-derived adducts to DNA bases form etheno-type and propano-type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Biomedicine and Biotechnology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2002